Comparison of drifter observations and model trajectories in the Baltic Sea

Joakim Kjellsson
Kristofer Döös
Peter Lundberg

Physical Oceanography,
Department of Meteorology,
Stockholm University

Pairs and triplets of SVIB surface drifters have been deployed in the Baltic Sea during the summers of 2010 and 2011. A wide range of Lagrangian statistics have been computed using the positions of the surface drifters. These have been compared to statistics from trajectories simulated using the Lagrangian trajectory code TRACMAP (Döös, 1995; Blanke & Raynaud, 1999) and the RCO model (Meier & Faxén, 2002). Good agreement is found for Lagrangian properties such as the Lagrangian integral time scale (Rupolo, 2007). Velocity is found to be underestimated by the model, both in strength and variability. Spread is found to be severely underestimated by the model, but also to be very dependent on the initial separation and the grid box size. Döös et al. (2011) found that better agreement is obtained when the horizontal resolution of the model is increased.

\[D_{tr}^m(t) = \sum_{i=1}^{n} (x_i^m(t) - x_i^m(0))^2, \]

where \(x_i^m \) is position of trajectory \(m \) and \(i \) is dimension.

\[T_{L,A} = \int_0^\infty R_x(\tau) \, d\tau, \]

where \(R_x(\tau) \) is the auto-correlation of the velocity in \(x \)-direction.

\[D_R^p(t) = \sum_{i=1}^{n} (x_i^p(t) - x_i^p(0))^2, \]

where \(x_i^p \) is the position of the trajectory \(q \) in the pair \(p \).

Figure 1: Tracks of the ten surface drifters deployed in the Baltic Sea 2010 and 2011. Filled dots mark every 256 hours. For the theoretical calculations, 36 model trajectories are started from each filled dot each model year.

Figure 2: Average absolute dispersion for drifters (horizontal dashed line) and model trajectories for each year. Error bars and dash-dotted lines show 10th and 90th percentiles. The absolute dispersion seems to be underestimated by the model.

Figure 3: Lagrangian integral time scale calculated for drifters and model trajectories each year. A 14-hour running mean was applied to the drifters in order to filter out inertial oscillations not resolved by the model.

Figure 4: Mean relative dispersion for drifters (black), model-simulated trajectories starting in the same grid box (red) and in adjacent grid boxes (blue). The relative dispersion is underestimated by the model, but also very dependent on the model resolution.

References:
Döös K. 1995. Inter-ocean exchange of water masses. J. Geophys. Res. 100 (C7), 13499-13514